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An SU(2) algebraic model is proposed for vibrational spectra of bent triatomic
molecules, where Fermi resonances between the stretching and the bending modes
are considered. As an example, the model is applied to the 142 vibrational energy
levels below 9000 cm 2 1 in the electronic ground state of nitrogen dioxide.

Algebraic methods are now well-established approaches to studying the

rotation-vibrational spectra of molecules (Iachello and Levine, 1995). The
first step toward those methods was due to Iachello and Levine (1982)

through the so-called vibron model, where the rovibronic spectra of diatomic

molecules can be described by the U(4) algebra. Later the model was extended

in a natural way to polyatomic molecules by introducing a U(4) algebra for

each bond. The U(4) model has the two advantages (1) rotations and vibrations

are treated simultaneously, and (2) Fermi resonances are described by the
nondiagonal matrix elements of Majorana operators, but it becomes quite

complex when the number of atoms in molecules is larger than four. By

separating the vibrational degrees of freedom from the rotational, Van Roos-

malen et al. (1983) developed an SU(2) algebraic model for the stretching

modes in XYX molecules. An improved SU(2) model (Iachello and Oss,

1991) was particularly well suited for dealing with the stretching vibrations
of polyatomic molecules. This model has been extended for both the stretching

and the bending modes in X3 molecules (Frank et al., 1996). As alternative

schemes, other Lie algebraic models (Bijker et al., 1995; Leroy and Boujut,

1997) have been presented for molecular spectroscopy. However, they are

more complex than the SU(2) model. In a different way, Ma et al. (1996),
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using a set of bosonic operators to describe the motion of each bond in

polyatomic molecules, have recently proposed another algebraic model, where

the interactions between the stretch and the bend are described by a quadratic
term or possible Fermi resonance terms (Hou et al., 1997a).

Although Lie algebraic models have been successful for many molecules,

they have not yet dealt with the vibrations in polyatomic molecules where

Fermi resonances between the stretch and the bend cannot be neglected,

especially when the number of atoms in the considered molecule becomes

larger than four. Very recently, this case has been studied in terms of boson-

realization models (Hou et al., 1998a) as well as in terms of simple Fermi

resonance-local mode models for bent triatomic (Halonen and Carring, 1988)

and pyramidal XY3 molecules (Halonen, 1997), where vibrational Hamiltoni-

ans are expressed in terms of curvilinear internal valence coordinates, due

to Fermi resonances playing an important role in the mechanism of intramolec-

ular vibrational energy redistribution (Wu, 1994). In Lie algebraic models,

the SU(2) model is simple and has been extensively used for the description

of molecular vibrations (Cooper and Gupta, 1997; Ping and Chen, 1997).

Previous studies (Frank et al., 1996; Hou and Ma, 1998; Hou et al., 1998b)

on this model suffer from the neglect of the Fermi resonance interactions.

In this paper we will study this case in the scheme of the SU(2) algebraic

model, and introduce a Fermi resonance-algebraic model. In this model, the

SU(2) algebra is used for describing the vibration of each bond, and the

relevant interactions are expressed in terms of the operators of SU(2). Our

method is addressed to such bent triatomic molecules as NO2, SO2, and H2O,

where Fermi resonances between the stretch and the bend are taken into

account. In a limit, the model corresponds to the boson-realization model

(Hou et al., 1997b). As an example, it will be applied to the recently observed

vibrational spectrum in the electronic ground state of nitrogen dioxide (NO2).

The model can be extended for vibrations of molecules with the symmetry

groups C3v , Td , and so on; corresponding results will be discussed elsewhere.

For a bent triatomic molecule XY2, we introduce three SU(2) algebras

to describe three interactions between atoms: SUi (2) (1 # i # 2) for X±Y

and SU3(2) for Y±Y interactions. Each SU a (2) (1 # a # 3) is generated by the

operators {NÃa , JÃ1 , a JÃ2 , a , JÃ0, a }, satisfying the following commutation relations:

[JÃ0, a , JÃ6 , b ] 5 6 d a b JÃ6 , a , [JÃ1 , a , JÃ2 , b ] 5 2 d a b JÃ0, a
(1)

[NÃa , JÃ0, b ] 5 0 [NÃa , JÃ6 , b ] 5 0

where NÃa is related to the Casimir operator of SO(2):

2JÃ20, a 1 JÃ1 , a JÃ2 , a 1 JÃ2 , a JÃ1 , a 5 NÃa (NÃa /2 1 1) (2)
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Denote by v a the number of quanta in the a th bond. The local basis states

for each bond are labeled by the eigenvalues N a of NÃa and v a , and written

as | N a , v a & . The action of JÃ6 , a on the local states is given by

JÃ1 , a | N a ,v a & 5 ! v a (N a 2 v a 1 1) | N a , v a 2 1 &
(3)

JÃ2 , a | N a ,v a & 5 ! (v a 1 1)(N a 2 v a ) | N a , v a 1 1 &

Those equivalent stretching bonds have the same Nj: N1 5 N2 5 Ns , and the

N3 for the bending vibration is denoted by Nb.
Since Fermi resonances play a key role in coupling the stretching and

bending vibrations, we take 2v1 1 2v2 1 v3 as the preserved phonon number.

The Hamiltonian expressed in terms of the operators JÃ6 , a is given as

H 5 h 1(JÃ2 ,1JÃ1 ,1 1 JÃ2 ,2JÃ1 ,2) /Ns 1 h 2(JÃ2 ,1 JÃ1 ,2 1 JÃ2 ,2 JÃ1 ,1)/Ns

1 h 3 JÃ2 ,3JÃ1 ,3 /Nb 1 h 4(JÃ2 ,1JÃ1 ,1 JÃ2 ,1JÃ1 ,1 1 JÃ2 ,2JÃ1 ,2 JÃ2 ,2JÃ1 ,2)/N
2
s

1 h 5 JÃ2 ,3JÃ1 ,3 JÃ2 ,3JÃ1 ,3 /N 2
b 1 h 6 JÃ2 ,1JÃ1 ,1 JÃ2 ,2JÃ1 ,2 /N 2

s

1 h 7(JÃ2 ,1JÃ2 ,1 JÃ1 ,2JÃ1 ,2 1 H.c.)/N 2
s

1 h 8(JÃ2 ,1JÃ1 ,2 1 JÃ2 ,2JÃ1 ,1) (JÃ2 ,1JÃ1 ,1 1 JÃ2 ,2JÃ1 ,2) /N 2
s

1 h 9(JÃ2 ,1JÃ1 ,2 1 JÃ2 ,2JÃ1 ,1) JÃ2 ,3JÃ1 ,3 /(NsNb)

1 h 10(JÃ2 ,1JÃ1 ,1 1 JÃ2 ,2JÃ1 ,2) JÃ2 ,3JÃ1 ,3 / (NsNb)

1 h 11{(JÃ2 ,1 1 JÃ2 ,2)JÃ1 ,3 JÃ1 ,3 1 H.c.}/(Ns Nb)

1 h 12{JÃ2 ,1 JÃ2 ,2(JÃ1 ,1 1 JÃ1 ,2) JÃ1 ,3JÃ1 ,3 1 H.c.}/(N 3/2
s Nb)

1 h 13{(JÃ2 ,1 JÃ2 ,1JÃ1 ,1 1 JÃ2 ,2JÃ2 ,2 JÃ1 ,2)JÃ1 ,3 JÃ1 ,3 1 H.c.}/ (N 3/2
s Nb)

1 h 14{(JÃ2 ,1 JÃ2 ,1JÃ1 ,2 1 JÃ2 ,2JÃ2 ,2 JÃ1 ,1)JÃ1 ,3 JÃ1 ,3 1 H.c.}/(N 3/2
s Nb)

1 h 15{(JÃ2 ,1 1 JÃ2 ,2)JÃ2 ,3 JÃ1 ,3JÃ1 ,3 JÃ1 ,3 1 H.c.}/(N 1/2
s N 2

b) (4)

where h k(1 # k # 3) are harmonic coupling constants, and the others are

anharmonic. The term with h 11 is the Fermi resonance term in the third-order

interaction. The last four terms are the fifth-order interactions related to the

Fermi resonances.

If one makes the scale transformations

a a [ JÃ1 , a / ! N a , a ²
a [ JÃ2 , a / ! N a (5)

and takes the limits Ns ® ` and Ns ® ` , equation (4) is nothing but the
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Hamiltonian in the boson-realization model (Hou et al., 1997b), and the

Hamiltonian for the stretching vibrations of two bonds (Kellman, 1985) can

be obtained from Eq. (4) by neglecting the bending vibrations and their

interactions.

Now we apply the model to the vibrational spectrum in the electronic

ground state of NO2. The recently observed data for its vibrational spectrum

below 9000 cm 2 1 are taken from Delon and Jost (1991). We first calculate

the Hamiltonian matrix elements in the symmetrized bases, then fit the

experimental data by a least squares optimization to determine the 15

parameters in the model. For comparison, we have made two fits. The

model in Fit 1 is taken in the harmonic limit; in Fit 2 we choose the

boson numbers Ns 5 75 and Nb 5 1050, because the bending vibration

is far more harmonic than the stretching vibrations. The observed vibrational

energy levels and the calculated differences (calculated 2 observed) for

both Fits 1 and 2 are presented in Table I, where our results are also

compared with those calculated by Xie and Yan (1996) from the potential

energy function of Tashkun and Jensen (1994). The obtained parameters

for two fits are listed in Table II.

The standard deviations (SD) in Fits 1 and 2 are 3.29 and 2.68

cm 2 1, respectively. Although the Fermi resonance-algebraic model provides

a little improvement over the SD obtained in the boson-realization model,

more sample calculations are needed to judge which model is better. The

SDs indicate that our models can well reproduce the experimental data

and can be compared with the results of Xie and Yan (1996), where an

ab initio calculation was made via the self-consistent field configuration

interaction method. This calculation can be successfully applied to small

molecules, but quickly becomes a formidable problem in the case of larger

molecules due to the size of their configuration spaces. The present

calculations for this sample molecule and others (Chen et al., 1996; Frank

et al., 1996; Hou et al., 1998a, b) demonstrate that algebraic methods

can be used as an effective approach to molecular vibrations with good

precision. These methods are particularly useful when describing vibrations

of large molecules and for high overtones, especially when no ab initio

calculations are available.

In summary, we have introduced a Fermi resonance-algebraic model for

vibrations of bent triatomic molecules, where Fermi resonances are dominant

in coupling the stretching with the bending states. In the limit, the model

corresponds to the boson-realization model. These two models have been

successfully applied to the 142 vibrational energy levels below 9000 cm 2 1

of nitrogen dioxide in the electronic ground state. Application and extension

of the models to large molecules are in progress.
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Table I. Observed Vibrational Energy Levels and Calculated Differencesa

Observed XYb Fit 1 Fit 2 Observed XYb Fit 1 Fit 2

749.649 2 0.57 0.45 0.94 5224.55 2 1.53 2 0.55 0.73

1319.794 2.04 2.95 1.38 5298.16 1.69 2 0.76 0.77

1498.34 2 0.67 0.61 1.54 5377.91 4.07 2.81 2.96

1616.852 3.83 1.34 1.86 5384.41 4.20 0.93 2 0.35

2063.118 2 0.73 2.79 1.49 5437.54 9.19 2 1.94 2 2.48

2246.04 2 0.70 0.50 1.78 5469.66 14.53 2.61 1.93

2355.151 2.04 1.58 2.16 5568.41 0.30 0.75 2 1.40

2627.337 4.74 4.56 2.67 5630.36 1.48 2 2.47 2 4.06

2805.6 2 1.78 2.12 1.20 5701.41 13.60 2 2.78 2 2.91

2906.074 4.40 0.38 2 0.34 5762.23 2 0.51 2 0.77 2 0.08

2993.0 2 1.17 2 0.15 1.38 5826.29 1.94 2 1.11 2 1.76

3092.481 1.47 1.45 2.19 5898.94 7.25 0.15 2 0.82

3201.433 8.31 2.35 2.60 5930.66 6.33 0.73 0.98

3364.57 0.83 3.76 1.89 5965.61 2 1.83 2 0.52 0.25

3547.1 2 2.00 1.10 0.60 5984.705 18.67 2 2.37 2 2.34

3637.843 1.51 0.40 2 0.54 6030.71 1.68 2 1.54 0.21

3738.6 2 1.60 2 0.72 0.90 6101.80 5.19 1.82 2.23

3829.34 2 0.97 0.43 1.42 6112.11 3.29 0.15 2 0.93

3922.61 6.81 4.57 3.40 6156.25 6.29 2 2.35 2 3.19

3929.12 6.42 1.68 1.70 6183.61 15.09 2.83 2.05

4100.58 2 0.39 2.77 1.10 6275.98 24.57 1.15 0.35

4179.938 6.29 2 0.79 2 1.81 6299.70 1.73 0.24 2 0.15

4286.82 2 1.30 0.49 0.43 6351.40 3.64 2 1.28 2 2.92

4369.1 2 0.21 2 0.47 2 1.45 6414.16 12.03 2 1.85 2 2.34

4461.07 9.23 2 1.37 2 1.69 6475.05 11.46 2 0.58 1.99

4482.57 2 1.83 2 0.97 0.57 6497.60 2 0.96 2 1.13 2 0.19

4564.22 1.50 0.05 1.31 6552.84 2.87 2 1.50 2 1.87

4652.0 3.46 4.99 3.66 6616.53 7.59 0.19 2 0.85

4656.34 5.53 0.10 0.11 6653.54 5.52 2 0.44 2 0.18

4754.209 15.20 2.56 2.20 6676.86 12.76 2 1.91 2 1.41

4835.05 2 0.08 1.91 0.59 6693.12 20.30 2 1.83 2 2.15

4905.52 2.93 2 1.29 2 2.69 6705.23 2 2.25 2 0.39 2 0.36

5025.2 2 0.66 2 0.13 0.22 6771.44 1.62 2 11.86 2 9.97

5098.0 1.21 2 0.40 2 1.26 6823.80 6.18 1.37 2.10

5180.54 7.43 2 0.46 2 1.20 6837.75 3.34 2 0.02 2 0.76

5205.81 9.67 2.42 2.81 6872.10 6.93 2 1.29 2 2.35

6897.37 14.88 1.90 1.22 8093.10 12.33 3.13 3.83

6921.67 21.04 2 1.72 2 1.03 8110.13 21.10 2 4.82 2 5.42

6979.21 26.55 1.95 0.88 8120.70 31.29 1.80 4.38

7029.48 0.26 2 0.18 2 0.06 8174.27 1.77 2 2.44 2 1.73

7072.23 4.75 2 1.30 2 2.87 8178.27 31.76 2.05 2 0.27

7125.60 12.01 2 0.95 2 1.69 8218.84 2 1.48 2 2.56 2 0.74

7192.29 27.79 2 2.49 2 1.50 8264.28 5.18 2 0.13 1.36

7193.35 9.02 2 2.51 0.27 8284.17 0.21 3.29 0.32

7231.06 2 2.10 2 0.95 0.11 8299.45 9.19 0.94 2 0.30

7277.83 3.20 2 1.74 2 1.79 8320.00 14.66 0.91 0.89
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Table I. Continued

Observed XYb Fit 1 Fit 2 Observed XYb Fit 1 Fit 2

7332.45 8.52 0.52 2 0.46 8330.35 20.88 1.31 2.73

7374.57 5.30 2 1.18 2 0.81 8374.58 43.80 4.06 6.52

7386.33 11.33 2 0.07 0.56 8382.64 27.55 2.74 1.78

7403.04 19.91 2 4.09 2 4.61 8441.44 11.50 2 7.09 2 0.97

7443.09 2 2.61 0.17 2 0.83 8457.15 43.66 0.31 2 0.35

7478.02 33.09 2 3.68 2 2.96 8482.12 2 4.25 2.65 2.67

7492.23 2 0.71 2 3.61 2 1.68 8507.33 6.34 0.93 2 0.29

7544.62 6.22 0.72 1.83 8542.25 15.32 3.52 2.04

7562.47 1.81 2 0.71 2 1.03 8585.54 21.45 7.49 8.51

7587.04 7.72 2 0.73 2 1.91 8608.92 29.76 2 8.97 2 6.01

7609.57 14.78 1.19 0.77 8623.34 7.78 2 3.93 2 0.78

7627.14 20.00 2 0.40 0.38 8652.27 31.89 2 0.07 2.77

7681.49 27.32 2.41 1.29 8690.72 11.67 0.60 3.28

7730.08 12.53 2 6.15 0.11 8721.11 1.61 0.19 0.72

7757.29 2 1.50 2 0.05 0.56 8758.28 10.45 3.43 2.43

7766.28 30.52 2 1.37 2 1.98 8797.95 13.76 6.92 6.97

7791.18 15.95 2 0.87 2 2.29 8809.81 2.98 2 0.19 0.68

7834.97 13.38 0.70 2 0.24 8817.61 31.06 5.06 8.14

7888.16 20.82 3.85 4.87 8816.65 20.99 2 6.26 2 6.85

7909.46 8.40 2 4.93 2 0.67 8868.35 38.50 2 0.49 0.57

7903.54 28.46 2 7.54 2 5.63 8911.29 2 2.31 4.75 0.78

7962.27 2 3.99 0.08 1.11 8941.28 2 1.34 2 5.57 2 3.43

8000.93 2.65 2 1.51 2 1.26 8944.50 49.95 2 1.89 2 0.41

8046.44 9.59 1.42 0.57 8968.55 13.92 16.60 2 2.23

8093.61 4.38 0.55 2 0.80 8982.08 3.63 2 0.90 1.34

SD 14.28 3.29 2.68

a In cm 2 1.
b Xie and Yan (1996).

Table II. Parameters (in cm 2 1) Obtained in the Two Fits

Fit 1 Fit 2 Fit 1 Fit 2

h 1 1490.858 1471.623 h 9 2.435 4.318

h 2 2 152.870 2 147.809 h 10 2 9.124 2 7.672

h 3 750.788 751.482 h 11 2 2.407 2 9.233

h 4 2 20.324 2 0.712 h 12 0.102 0.858

h 5 2 0.690 2 0.898 h 13 1.102 0.609

h 6 0.427 1.246 h 14 2 0.024 2 0.183

h 7 2 3.040 2 3.282 h 15 0.019 0.022

h 8 5.212 4.804
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